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Minimization of Region-Scalable Fitting Energy
for Image Segmentation

Chunming Li, Chiu-Yen Kao, John C. Gore, and Zhaohua Ding

Abstract—Intensity inhomogeneities often occur in real-world
images and may cause considerable difficulties in image segmenta-
tion. In order to overcome the difficulties caused by intensity inho-
mogeneities, we propose a region-based active contour model that
draws upon intensity information in local regions at a controllable
scale. A data fitting energy is defined in terms of a contour and two
fitting functions that locally approximate the image intensities on
the two sides of the contour. This energy is then incorporated into
a variational level set formulation with a level set regularization
term, from which a curve evolution equation is derived for energy
minimization. Due to a kernel function in the data fitting term, in-
tensity information in local regions is extracted to guide the motion
of the contour, which thereby enables our model to cope with in-
tensity inhomogeneity. In addition, the regularity of the level set
function is intrinsically preserved by the level set regularization
term to ensure accurate computation and avoids expensive reini-
tialization of the evolving level set function. Experimental results
for synthetic and real images show desirable performances of our
method.

Index Terms—Image segmentation, intensity inhomogeneity,
level set method, region-scalable fitting energy, variational method.

I. INTRODUCTION

A CTIVE contour models have been extensively applied
to image segmentation [4], [7], [10], [19]. There are

several desirable advantages of active contour models over
classical image segmentation methods, such as edge detection,
thresholding, and region grow. First, active contour models can
achieve sub-pixel accuracy of object boundaries [3]. Second,
active contour models can be easily formulated under a princi-
pled energy minimization framework, and allow incorporation
of various prior knowledge, such as shape and intensity dis-
tribution, for robust image segmentation [5], [14]. Third, they
can provide smooth and closed contours as segmentation re-
sults, which are necessary and can be readily used for further
applications, such as shape analysis and recognition.

Existing active contour models can be categorized into two
major classes: edge-based models [3], [10]–[12], [18], [19],
[28], [30], and region-based models[4], [23], [25]–[27], [29].
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Edge-based models use local edge information to attract the
active contour toward the object boundaries. Region-based
models aim to identify each region of interest by using a certain
region descriptor to guide the motion of the active contour.
However, popular region-based active contour models [4], [23],
[25], [26] tend to rely on intensity homogeneity in each of the
regions to be segmented. For example, the popular piecewise
constant (PC) models are based on the assumption that image
intensities are statistically homogeneous (roughly a constant)
in each region.

In fact, intensity inhomogeneity often occurs in real images
from different modalities. For medical images, intensity inho-
mogeneity is usually due to technical limitations or artifacts in-
troduced by the object being imaged. In particular, the inho-
mogeneities in magnetic resonance (MR) images arise from the
nonuniform magnetic fields produced by radio-frequency coils
as well as from variations in object susceptibility. Segmentation
of such MR images usually requires intensity inhomogeneity
correction as a preprocessing step [9].

Intensity inhomogeneity can be addressed by more so-
phisticated models than PC models. Vese and Chan [29]
and Tsai et al. [27] independently proposed two similar
region-based models for more general images. Aiming at
minimizing the Mumford–Shah functional [21], both models
cast image segmentation as a problem of finding an optimal
approximation of the original image by a piecewise smooth
function. These models, widely known as piecewise smooth
(PS) models, have exhibited certain capability of handling
intensity inhomogeneity. However, the PS models are compu-
tationally expensive and suffer from other difficulties. Recently,
Michailovich et al. [20] proposed an active contour model using
the Bhattacharyya difference between the intensity distributions
inside and outside a contour. Their model does not rely on the
intensity homogeneity and, therefore, to some extent, overcome
the limitation of PC models.

In this paper, we propose a new region-based active contour
model in a variational level set formulation. We first define a re-
gion-scalable fitting (RSF) energy functional in terms of a con-
tour and two fitting functions that locally approximate the image
intensities on the two sides of the contour. The optimal fitting
functions are shown to be the averages of local intensities on the
two sides of the contour. The region-scalability of the RSF en-
ergy is due to the kernel function with a scale parameter, which
allows the use of intensity information in regions at a control-
lable scale, from small neighborhoods to the entire domain. This
energy is then incorporated into a variational level set formula-
tion with a level set regularization term. In the resulting curve
evolution that minimizes the associated energy functional, in-
tensity information in local regions at a certain scale is used
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to compute the two fitting functions and, thus, guide the mo-
tion of the contour toward the object boundaries. As a result,
the proposed model can be used to segment images with inten-
sity inhomogeneity. Due to the level set regularization term in
the proposed level set formulation, the regularity of the level
set function is intrinsically preserved to ensure accurate com-
putation for the level set evolution and final results, and avoid
expensive reinitialization procedures.

Note that our model, originally termed as local binary fit-
ting model, was first presented in [15], and published later in
[16] as a full conference paper. Recently, local intensity aver-
ages were also introduced to active contour models in the con-
text of geodesic active contour model [13] or piecewise smooth
models [1], [2], [24]. These models exhibit certain capability of
handling intensity inhomogeneity. In this paper, local intensity
averages are derived as the minimizers of the proposed energy
functional in a distinct variational formulation.

The remainder of this paper is organized as follows. In Sec-
tion II, we first review some well known existing region-based
models and their limitations. The proposed method is introduced
in Section III. The implementation and results of our method are
given in Section IV, followed by some discussions in Section V.
This paper is summarized in Section VI.

II. REGION-BASED ACTIVE CONTOUR MODELS

Let be the image domain, and be a
given gray level image. In [21], Mumford and Shah formulated
the image segmentation problem as follows: given an image ,
find a contour which segments the image into nonoverlapping
regions. They proposed the following energy functional:

(1)

where is the length of the contour . The minimization of
Mumford–Shah functional results in an optimal contour that
segments the given image , and an image that approximates
the original image and is smooth within each of the connected
components in the image domain separated by the contour .
In practice, it is difficult to minimize the functional (1) due to the
unknown contour of lower dimension and the nonconvexity
of the functional.

Chan and Vese [4] proposed an active contour approach to the
Mumford–Shah problem for a special case where the image in
the functional (1) is a piecewise constant function. For an image

on the image domain , they propose to minimize the
following energy:

(2)

where and represent the regions outside
and inside the contour , respectively, and and are two
constants that approximate the image intensity in

Fig. 1. Error of thresholding and Chan–Vese model for images with intensity
inhomogeneity. Column 1: Original images. Column 2: Thresholding results.
Column 3: Results of Chan–Vese’s PC model.

and . We call the first two terms in (2) the global fit-
ting energy. This energy can be represented by a level set formu-
lation, and then the energy minimization problem can be con-
verted to solving a level set evolution equation [4].

The optimal constants and that minimize the above
global fitting energy are the averages of the intensities in the en-
tire regions and , respectively. Such op-
timal constants and can be far away from the original
image data, if the intensities within or
are not homogeneous. They do not contain any local intensity
information, which is crucial for segmentation of images with
intensity inhomogeneity. As a consequence, the PC model [4]
generally fails to segment images with intensity inhomogeneity.
Likewise, more general piecewise constant models in a multi-
phase level set framework [23], [29] are not applicable for such
images either.

The difficulties in segmenting images with intensity inhomo-
geneity can be seen from the following examples. The vessel
image and a brain MR image in the first column in Fig. 1 are typ-
ical examples of images with intensity inhomogeneity. For such
images, simple thresholding cannot segment them correctly. In
fact, no matter what threshold value is selected, some part of
the background/foreground is incorrectly identified as the fore-
ground/background, as shown in the second column. The third
column of Fig. 1 shows similar erroneous results obtained by
applying Chan and Vese’s PC model [4]. These examples show
the inability of the PC model and simple thresholding in seg-
menting images with intensity inhomogeneity.

The PS models in [29] and [27] overcome the limitation of PC
models in segmenting images with intensity inhomogeneity. In
[29], Vese and Chan introduced an energy functional on a level
set function and two smooth functions and that are
defined on the regions outside and inside the zero level contour
of a level set function , respectively. The energy functional
has a data fitting term, which describes the approximation of
the image by and in their corresponding subregions, and
a smoothing term that forces and to be smooth.

The minimization of the energy functional in the PS model
consists of the following three computational tasks. The first
one is to solve the PDE of the main function by a sequence of
iterations. Second, at every certain number of iterations for ,
the fitting functions and have to be updated by solving
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two elliptic PDEs. Third, the functions and , which are
defined on different regions, have to be extended to the entire
image domain. In addition, periodic reinitialization is typically
necessary to repair the level set function degraded by the evo-
lution. Obviously, the involved computation in PS model is ex-
pensive, which limits its applications in practice.

III. REGION-SCALABLE FITTING MODEL

A. Region-Scalable Fitting Energy

In this section, we propose a region-based model using inten-
sity information in local regions at a controllable scale. We first
introduce a nonnegative kernel function
with the following properties:

1) ;
2) , if , and ;
3) .
We call property 2) a localization property of the kernel .

The kernel function and its localization property play a key role
in the proposed method.

Consider a given vector valued image , where
is the image domain, and is the dimension

of the vector . In particular, for gray level images,
while for color images. Let be a closed contour in the
image domain , which separates into two regions:

and . For a given point , we
define the following local intensity fitting energy:

(3)

where and are positive constants, and and
are two values that approximate image intensities in and ,
respectively. The intensities that are effectively involved
in the above fitting energy are in a local region centered at the
point , whose size can be controlled by the kernel function ,
as explained below. Therefore, we call the local intensity fitting
energy in (3) a region-scalable fitting (RSF) energy of a contour

at a point .
The choice of the kernel function is flexible, as long as

it satisfies the above three basic properties. In this paper, it is
chosen as a Gaussian kernel

(4)

with a scale parameter .
It is necessary to elaborate on the meaning of the fitting

energy defined by (3) in the following. First, is a
weighted mean square error of the approximation of the image
intensities outside and inside the contour by the fitting
values and , respectively, with as the
weight assigned to each intensity at . Second, due to the
localization property of the kernel function, the contribution of
the intensity to the fitting energy decreases and ap-
proaches to zero as the point goes away from the center point

. Therefore, the energy is dominated by the intensities
of the points in a neighborhood of . In particular, the

Gaussian kernel decreases drastically to zero as
goes away from . Roughly speaking, the Gaussian kernel

is effectively zero when . Therefore,
only the intensities in the neighborhood
are dominant in the energy . In this sense, we say that the
fitting energy is localized around the point .

The fitting energy in (3) is region-scalable in the following
sense. The fitting values and approximate the image
intensities in a region centered at the point , whose size can be
controlled by the scale parameters . The fitting energy (3) with
a small only involves the intensities within a small neighbor-
hood of the point , while the fitting energy with a large in-
volves the image intensities in a large region centered at . Note
that, in our preliminary work [16], the energy (3) was termed as a
local fitting energy, as opposed to the global fitting energy (2) in
Chan and Vese’s PC model [4]. However, it is more appropriate
to call the energy (3) a region-scalable fitting energy, since the
intensities for the fitting energy (3) are not restricted to a small
local region. In fact, the intensities for the fitting energy
(3) can be in a region of any size: from a small neighborhood to
the entire image domain. This region-scalability is a unique and
desirable feature of the proposed method.

Given a center point , the fitting energy can be min-
imized when the contour is exactly on the object boundary
and the fitting values and optimally approximate the local
image intensities on the two sides of . To obtain the entire ob-
ject boundary, we must find a contour that minimizes the en-
ergy for all in the image domain . This can be achieved
by minimizing the integral of over all the center points
in the image domain , namely, . In
addition, it is necessary to smooth the contour by penalizing
its length , as in most of active contour models. Therefore,
we define the following energy functional:

(5)

This energy functional is defined for a contour . To handle
topological changes, we will convert it to a level set formulation
in the next subsection.

B. Level Set Formulation

In level set methods [22], a contour is represented by
the zero level set of a Lipschitz function , which is
called a level set function. In this paper, we let the level set func-
tion take positive and negative values outside and inside the
contour , respectively. Let be the Heaviside function, then
the energy functional can be expressed as

(6)

where and . Thus, the
energy in (5) can be written as (7), shown at the bottom of the
next page, where the last term computes the
length of the zero level contour of . Note that this length term
has been commonly used in variational level set methods for
the regularization of the zero level contour [4], [29]. The length
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of the zero level contour can be equivalently expressed as the
integral with the Dirac delta function , which
has often been used in variational level set methods [5], [18].

In practice, the Heaviside function in the above energy
functionals is approximated by a smooth function defined
by

(8)

The derivative of is

(9)

By replacing in (7) with , the energy functional in (7)
is then approximated by (10), shown at the bottom of the page,
where and .

To preserve the regularity of the level set function , which
is necessary for accurate computation and stable level set evo-
lution, we introduce a level set regularization term in our varia-
tional level set formulation. As proposed in [18], we define the
level set regularization term as

(11)

which characterizes the deviation of the function from a
signed distance function. Therefore, we propose to minimize
the energy functional

(12)

where is a positive constant. To minimize this energy func-
tional, its gradient flow is used as the level set evolution equa-
tion in the proposed method.

C. Energy Minimization

We use the standard gradient descent (or steepest descent)
method to minimize the energy functional (12). For a fixed
level set function , we minimize the functional
in (12) with respect to the functions and . By
calculus of variations, it can be shown that the functions

and that minimize satisfy the following
Euler–Lagrange equations:

(13)
From (13), we obtain

(14)

which minimize the energy functional for a fixed
. The functions and given by (14) are weighted

averages of the intensities in a neighborhood of , whose size
is proportional to the scale parameter . Note that the denomi-
nators in (14) are always positive, due to the fact that

and by the definition of
in (8).

Keeping and fixed, we minimize the energy functional
with respect to using the standard gradient de-

scent method by solving the gradient flow equation as follows:

(15)

where is the smoothed Dirac delta function given by (9), and
and are the functions

(16)

where and are given by (14).
The above (15) is the level set evolution equation to be solved

in the proposed method. The term is de-
rived from the data fitting energy, and, therefore, is referred to as
the data fitting term. This term plays a key role in the proposed
model, since it is responsible for driving the active contour to-
ward object boundaries. The second term
has a length shortening or smoothing effect on the zero level
contour, which is necessary to maintain the regularity of the
contour. This term is called the arc length term. The third term

is called a level set regularization

(7)

(10)
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term, since it serves to maintain the regularity of the level set
function.

D. Regularity of Fitting Functions and Level Set Function

In the proposed model, we introduce two fitting functions
and . They are different from the data fitting functions and

in the PS model, due to the different natures of the data fitting
energy terms in the two models. In the fitting energy in (6),
each integral is a weighted average squared distance from the
fitting value (or ) to all the image intensities
the region (or the region ), with the kernel

as the weight. Due to the localization property of the
kernel , the values and that minimize are
determined by all the intensities in a neighborhood of .
When the point moves to an adjacent point for a
small displacement , the majority of points in the neighbor-
hood of remain in that of . Therefore, the values of
and which minimize are close to and
that minimize , due to the overlap of the neighborhoods of
and . This implies the smoothness of the functions and .
The smoothness of and is also confirmed by the Gaussian
convolutions in (14).

The regularity of the level set function is also important for
stable evolution and accurate computation in level set methods.
In our method, the regularity of the level set function is inher-
ently ensured by the level set regularization term in our level set
formulation. Without the level set regularization term, the level
set function typically grows to very large values on both sides
of the zero level set, which yields an arbitrarily small value of

as a factor in the evolution (15). Thus, the motion of the
contour becomes much slower and can even be stopped before
it reaches the desired object boundaries. More importantly, the
irregularity of make the involved computation inaccurate and,
therefore, causes erroneous segmentation results. For more de-
tails about the significance and the mechanism of the level set
regularization term, the readers are referred to [18].

Note that the irregularity of the level set function occurs in the
PS model. The regularity of the level set function can be even-
tually violated by the level set evolution according to the PS
model. Therefore, an extra numerical remedy, known as reini-
tialization, is usually needed to periodically stop the evolution
and reshape the degraded level set function as a signed distance
function for further computation. However, the practice of reini-
tialization may cause some undesirable side effects, such as pre-
venting the detection of interior boundaries within an object, as
pointed out in [4]. In our model, the regularity of the level set
function is inherently maintained by the level set regularization
term. This term is associated with the penalizing term as a
soft constraint on the regularity of the level set function , which
regularizes the evolving level set function by penalizing its de-
viation from a signed distance function, instead of forcing to
be a signed distance function.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Implementation

All the partial derivatives and in (15) can be
simply discretized as central finite differences. The temporal

derivative is discretized as a forward difference. An iteration
scheme is then obtained by discretizing the PDE (15). The level
set function can be simply initialized as a binary step function
which takes a negative constant value inside a region
and a positive constant value outside, for a constant .
We choose in the experiments shown in this paper. The
advantage of using binary step function as the initial level set
function is that new contours can emerge easily and the curve
evolution is significantly faster than the evolution from an initial
function as a signed distance map. In our implementation, the
functions and are updated at every time step according to
(14) before the update of the level set function .

To compute the convolutions in (14) more efficiently, the
kernel can be truncated as a mask, where is the
smallest odd number no less than . For example, given a
scale parameter , we have and the size of
the mask is 13 13. The difference between using the above
specified size of the mask and a larger mask of , such as
41 41 for , has been found to be neglectable in terms
of segmentation results. Therefore, it is advisable to use the
above given mask size to compute the convolutions efficiently.

The main computational cost in our method is for computing
and in (14) and in the level set evolution (15).

There are four convolutions in the numerators and denominators
in (14). However, we notice that in (14) can be written as

where is the constant function with value 1. In the above ex-
pression of , the second terms in the numerator and the de-
nominator are the same as the numerator and the denominator
in , while the terms in the numerator and in the
denominator do not depend on the evolving level set function

. Therefore, the two convolutions and can be
computed only once before the iterations. During the iterations,
only the two convolutions and are
computed for the evolving . The term in (15) can
be expressed as a combination of three convolutions, with one
independent of , which can be computed only once before the
iterations. Therefore, there are totally four convolutions to be
computed at each iterations in the above implementation.

B. Results

The proposed method has been tested with synthetic and real
images from different modalities. Unless otherwise specified,
we use the following parameters in this paper: ,

, time step , , and
. We use relatively small scale parameter for the experi-

ments in this section. In general, our method with a smaller scale
can produce more accurate location of the object boundaries,

while it is more independent of the location of the initial con-
tour when a larger is used. The influence of different scale
parameters on the behavior of our method will be discussed in
Section V.

We first show the results for three synthetic images in Fig. 2.
These images have the same objects but different distribution of
intensities. The initial and the final contours are plotted on the
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Fig. 2. Results of our method for three synthetic images. Column 1: Initial
contour and original image. Column 2: Final contour. Column 3: 1-D cross sec-
tion of the fitting functions f (dashed lines), f (dotted lines), and the original
image I (solid lines), for the final level set function �. Column 4: 1-D cross sec-
tion of the fitting image f = M (�)f (dashed lines) for the final level
set function � and the original image I (solid lines).

images in the first column and the second column, respectively.
To clearly see the profile of the functions and associated
with the final level set function , we plot a 1-D cross section at
the middle row of and and the input image in the third
column. The intensity of the image in the first row is piecewise
constant. There are three distinct intensities in the three regions.
The result in Row 1 shows that our method is able to segment
images with multiple distinct means of image intensities.

The second and third rows in Fig. 2 show the results for
two images corrupted by intensity inhomogeneity. The image in
third row was generated by adding Gaussian noise to the clean
image in the second row. The standard deviation of the noise is
4.0, which is quite high relative to the image contrast. As ex-
plained in Section III-D, the functions and given by (14)
are smooth enough, even in the presence of noise. This is con-
firmed by the smoothness of and plotted in the second and
third rows. In addition, we can see that the fitting functions
and are only affected marginally by the added noise, even
though the noise is quite high. As a result, the segmentation re-
sults for the clean image and the noise contaminated version are
very close. This demonstrates the robustness of our method to
the noise.

Fig. 3 shows the results for two synthetic images, two X-ray
images of vessels, and a real image of a T-shaped object. All of
them are typical images with intensity inhomogeneity. In par-
ticular, the vessel image in the third row has been used in Fig. 1,
by which we have shown that the PC model fails to segment the
images due to the intensity inhomogeneity. The image in the
second row was created with intensity inhomogeneity and con-
taminated with high level noise. Our method successfully ex-
tracts the object boundaries for these two images, as shown in
Fig. 3. The third and the fourth rows in Fig. 3 show the results
of our method for two real images of blood vessels. In these two
images, part of the vessel boundaries are quite weak, which ren-
ders it a nontrivial task to segment the vessels in the images. The

Fig. 3. Results of our method for synthetic images and real images. The curve
evolution process from the initial contour (in the first column) to the final con-
tour (in the fourth column) is shown in every row for the corresponding image.

image in the bottom row is a real image with intensity inhomo-
geneity due to nonuniform illumination. Satisfactory segmenta-
tion results have been obtained for these challenging images, as
shown in Fig. 3.

Intensity inhomogeneity also often occurs in MR images,
such as the one shown in the upper row in Fig. 4. Some in-
tensities of the white matter in the upper part are even lower
than those of the gray matter in the lower part. Nevertheless, our
method successfully segments the white matter in these two im-
ages. For this image, we use the parameters , ,

, time step , , and
. Note that we choose a larger value than for this image

to avoid the emergence of new contours far away from the ini-
tial contour, such as the skull boundaries, as explained in Sec-
tion IV-C. In this experiment, we choose a larger than in other
experiments to further penalize the length of the contour, which
also discourages the expansion of the contour to some extent.
The lower row in Fig. 4 shows the result for a CT image of a
liver with a tumor (the dark area in the middle). For this image,
we used the scale parameter . This image is rather noisy
and part of the tumor boundary is weak. Our method success-
fully extracts the object boundaries in this image.

Fig. 5 shows an application of our model to a color image
of potatoes. With this experiment, we also demonstrate the
smoothness of the fitting images and by showing the
images of them. The first row shows the active contours on the
original images from its initial to converged state. The second
and third rows show the corresponding fitting images and
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Fig. 4. Results of our method for MR and CT images. The curve evolution
process from the initial contour (in the first column) to the final contour (in the
fourth column) is shown in every row for the corresponding image.

Fig. 5. Results of our method for a color image of potatoes. Row 1 shows the
curve evolution process from the initial contour to the final contour. Row 2,
Row 3, and Row 4 show f , f , and the fitting image f = M (�)f ,
respectively, at different time steps.

, computed by (14). It is clearly seen that these images are
smooth, which experimentally verifies the regularity of the fit-
ting functions and as mentioned in the previous section. It
is interesting to note that their combination
enhances the features in the images, such as object boundaries,
when it converges to its final result (the last image in the fourth
row).

C. Remarks on the Behavior of Curve Evolution

Note that new contours can emerge during the curve evolution
in our method. This has been observed in the experiments for
the images in the second and third rows of Fig. 3 and the first
row in Fig. 4. The emergence of new contours speeds up the
curve evolution toward final results, and enables the detection of
interior boundaries, such as the two interior boundaries within
the white matter in Fig. 4.

The emergence of new contours is possible because the data
fitting term in (15) has influence on the
change of in the entire image domain, as the factor is
nonzero by the definition of in (9). For points far away from
the zero level contour but near an object boundary, the values of

may still be large. Although the factor takes
small values far away from the zero level set, the data fitting term

is not zero and cannot be ignored, which
can eventually change the value of . As a result of cumula-
tive change of , new zero level contours may emerge at strong
object boundaries. Especially, when the level set function is
initialized to be small values, such as the binary step function
used in our implementation (see Section IV-A), new contours
can emerge more easily and quickly. In our experiments, the
initial level set function is defined as a binary step function
that takes values of and with a small value of .
As a result, the factor takes relatively larger values in the
beginning of the level set evolution, which leads to faster emer-
gence of new contours at strong edges, even at locations far away
from current zero level set. Of additional note, a larger gives
a broader profile of , which makes it easier for new contours
to emerge. However, broader profile of decreases accuracy in
the final contour location.

The coefficients and are the weights of the two inte-
grals in (3), or equivalently (6), over the regions
and , respectively. In most cases, we set the coeffi-
cients as the same constant , which leads to a fair com-
petition between the regions inside and outside the zero level
contour during the evolution. However, when different weights

and are used, the amounts of penalty imposed on the in-
tegrals over and are different. For ex-
ample, when is larger than , larger penalty is imposed on
the integral over the region in the data fitting energy,
which implies a larger penalty on the area of . Due to
this larger penalty on the area of , the emergence of
new contour outside the initial contour, which would increase
the area of , is to some extent prevented. Especially,
at locations far away from the current zero level set, we have

, and, thus, the signs of tend to
be positive there, because . As a result, does not de-
crease at these locations, where is initially positive, and, thus,
no new contours are created there.

D. Comparison With Piecewise Smooth Model and Mean Shift
Algorithm

It is obvious that PC models by nature cannot address inten-
sity inhomogeneity. Previous experimental results in Section II
for Chan and Vese’s PC model shown in Fig. 1 and those of our
method shown in Figs. 3 and 4 have demonstrated the advantage
of our method over the PC model. We now compare our model
with the PS model in [29] and the well-known mean shift algo-
rithm [8], both of which possess certain capability of handling
intensity inhomogeneity.

We first show the results of the comparison with the PS model.
As described in Section II, the PS model consists of quite a few
computationally expensive steps. By comparing the computa-
tional procedures in the PS model and our model, it is clear
that our method is much simpler and more efficient than the PS
model. This is demonstrated by the following experiments of
comparing the computation time in both methods for five im-
ages.

Fig. 6 shows the results of our model and PS model using the
same images and the same initial contours in the upper row and
the lower row, respectively. The CPU times for these images
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Fig. 6. Comparison of our model with PS model. The initial contours and the final contours are plotted as the dashed green contours and solid red contours,
respectively. Upper row: The results of our model. Lower row: The results of PS model.

TABLE I
CPU TIME (IN SECOND) FOR OUR MODEL AND VESE-CHAN’S PS

MODEL FOR THE IMAGES IN FIG. 6 IN THE SAME ORDER. THE

SIZES OF IMAGES 1–5 ARE 88� 85, 75� 79, 131� 103, 110� 110,
AND 78� 119 PIXELS, RESPECTIVELY

are listed in Table I, which were recorded from our experiments
with Matlab code run on a Dell Dimension 4600 PC, with Pen-
tium 4 processor, 2.80 GHz, 1 GB RAM, with Matlab 7.4 on
Windows XP. The sizes of these images are also shown in this
table. In the experiments with the images in Fig. 6, our model
is about 15 to 60 times faster than the PS model. This demon-
strates the significant advantage of our model in terms of com-
putational efficiency.

Our model is also superior in terms of accuracy. This is ob-
vious for the MR image in the fifth column in Fig. 6. Our method
extracts the white matter boundary accurately, while the contour
of the PS model skips some parts of the white matter boundary
and is finally attracted to the outer boundary of the gray matter.
The right most column in Fig. 6 is an enlarged view of the lower
left portion of the figures in the fifth column, which clearly
shows the advantage of our model over the PS model.

For comparison with the mean shift algorithm, we used
the software EDISON downloaded from http://www.caip.
rutgers.edu/riul/research/code/EDISON, which is based on a
fast implementation of the mean shift algorithm using a
speed-up scheme described in [6]. Fig. 7 shows the results
of mean shift algorithm for the same images in Fig. 6 for
the comparison with the PS model. The result of mean
shift algorithm for the first image is similar to that of our
method, showing certain ability of the mean shift algorithm
in handling intensity inhomogeneity. However, for the first
vessel image, a small portion of the vessel is missing. For
the rest three images, the errors of mean shift algorithm are
even more obvious. We notice that the segmentation result
of mean shift algorithm is somewhat sensitive to the choice
of two major parameters: spatial bandwidth and range
bandwidth . We have tweaked these two parameters and
other minor parameters for the best segmentation results for
these five images.

Fig. 7. Results of mean shift algorithm for five images with spatial
bandwidth h and the range bandwidth h represented as a pair (h ; h ) =
(3,8), (7,8), (4,3), (4,4), and (6,6) in the order from left to right.

Fig. 8. Results of our model with scale parameters � = 3.0, 6.0, and 10.0 (from
the left to the right).

V. FURTHER DISCUSSION

A. Discussion on Region-Scalability

It is necessary to examine the influence of the scale parameter
on the segmentation results of the proposed method, although

the same scale parameter has been used for most of the
images previously in this paper. For this purpose, we apply our
method using three different scale parameters 3.0, 6.0, and
10.0 for the same MR image used in Fig. 4. The results for these
three scale parameters are shown in Fig. 8. These results are
grossly similar, while differences in fine details of the resulting
white matter boundaries can be observed. The most accurate
segmentation result is obtained for the smallest scale parameter

.
Our method with a larger scale parameter is more robust

to the location of the initial contour. For sufficiently large scale
, our method can be as insensitive to the initialization as the

PC model [4]. In fact, the PC model [4] can be considered as an
extreme case of the proposed RSF model for . This can
be seen from the limit of the fitting function and in (14)
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Fig. 9. Experiments for an MR image of bladder. (a) Initial contour and the original image. (b) Result of our method for � = 3:0. (c) Result of our method for
� = 30:0. (d) Result of the PC model. (e)–(h) Results (white solid contours) of our model for four different initial contours (the black dashed rectangles or circles),
with the same scale parameter � = 10:0. Image courtesy of University of Graz.

as . From (14) and the definition of , it can be shown
that

(17)

The right-hand sides in (17) are the means of the intensities in
the regions and , respectively, which are the
same constants that fit the intensities in these two regions in the
PC model [4].

To examine the performances of our method using a relatively
small and a sufficiently large scale parameters , we use

and for an MR image of bladder with intensity
inhomogeneity. The initial contour shown in Fig. 9(a) is used in
both cases. The corresponding results for and
are shown in Fig. 9(b) and (c), respectively. It can be seen that
the result for is desirable, with the bladder and the
surrounding minor structures segmented very well. The result
of our method with , however, is similar to the result
of the PC model, shown in Fig. 9(d), both missing a significant
part of the bladder.

An important advantage of the proposed model is its region-
scalability: it allows the choice of the scale parameter to ex-
ploit intensity information in regions of different scales, from
small neighborhoods to the entire image domain. For many real-
world images, the intensity inhomogeneity is not so severe. In
this situations, a reasonably large can be used in our model,
so that it is more independent of initialization, while achieving
satisfactory accuracy in segmentation. For example, we set

in our model and tested it with four different initial con-
tours (shown as black dashed rectangles or circles) for the same
image in the lower row of Fig. 9. For these four diverse initial-
izations, almost the same segmentation results (shown as white
solid contours) were obtained, as shown in the lower row of
Fig. 9. The boundary of the object of interest (the bladder) is
extracted very well for these different initializations. We remark
that using a larger scale parameter increases the computational
cost of the convolutions in each iteration than using a smaller
one. However, the number of total iterations can be reduced by
using a larger . Therefore, the total computational costs are
comparable for both cases.

B. Some Extensions

Note that the level set formulation proposed in this paper is a
two-phase model, which cannot segment regions with multiple
junctions. This limitation can be easily overcome by extending

the formulation in this paper to a multiphase level set formula-
tion. The extension to multiphase level set formulation is simply
established by generalizing the local intensity fitting energy in
(3) as

where are fitting functions associated with dis-
joint regions in . These regions can be repre-
sented with multiple level set functions as in [29] to define an
energy functional of the level set functions. During the prepara-
tion of this paper, we have reported our results of the multiphase
formulation for 3-D segmentation of white matter, gray matter,
and cerebral-spinal fluid in brain MR images in [17].

The experiments in Section V-A show the advantages of
using small and large scale parameters in the proposed RSF
model. In this paper, we only use one scale parameter in
the RSF energy for each given image. However, the proposed
RSF model provides basic elements that can be used in more
sophisticated ways to further improve both accuracy and ro-
bustness, such as combining RSF energy terms with different
scale parameters. The computational efficiency can also be
significantly improved by narrow band implementation of the
proposed model. Due to the space limit, the detail of the above
extensions are not included in this paper.

VI. CONCLUSION

We have presented a new region-based active contour model
that draws upon intensity information in local regions at a con-
trollable scale. The proposed model is able to segment images
with intensity inhomogeneity, and has desirable performance for
images with weak object boundaries. With the level set regular-
ization term in the proposed level set formulation, the regularity
of the level set function is intrinsically preserved to ensure ac-
curate computation and avoid expensive reinitialization proce-
dures. Experimental results have demonstrated the advantages
of our method over several well-known methods for image seg-
mentation.
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