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Argonne	Na0onal	Laboratory	

§  $675M	/yr	budget	
§  3,200	employees	
§  1,450	scien6sts/eng	
§  750	Ph.D.s	
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Argonne’s	Next	Big	Supercomputer:	Aurora	
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Following the International  Exascale Software Initiative   
(IESP 2008-2012 èBig Data and Extreme Computing workshops (BDEC) 

http://www.exascale.org/bdec/ 
 
Overarching goal:  
1.  Create an international collaborative process focused on the co-design of software infrastructure for 

extreme scale science, addressing the challenges of both extreme scale computing and big data, 
and supporting a broad spectrum of major research domains, 

2.  Describe funding structures and strategies of public bodies with Exascale R&D goals worldwide 
3.  Establishing and maintaining a global network of expertise and funding bodies in the area of 

Exascale computing 
 
1 – BDEC Workshop, Charleston, SC, USA, April 29-May1, 2013 
2 – BDEC Workshop, Fukuoka, Japan, February 26-28, 2014 
3 – BDEC Workshop, Barcelona, Spain, January 28-30, 2015 
4 – BDEC Workshop, Frankfurt, Germany, June 15-17, 2016 
 

Europe-USA-Asia		
Interna6onal	series	of	Workshops	on	Extreme	Scale	Scien6fic	Compu6ng	
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Courtesy:	Mark	Asch	



Courtesy:	Mark	Asch	





Hardware	&	OS	

Applica0ons	
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Why	Converge?				
Independent	paths:	More	Cost,	Less	Science,		

•  $	mul6ple	hardware	so]ware	infrastructures	
•  $	developing	so]ware	for	two	communi6es	
•  $	learning	two	compu6ng	models	
•  $	smaller	discovery	community,	fewer	ideas	
•  Less	science	
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Hardware	&	OS	

Applica0ons	

Shared	
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ANL:	Pete	Beckman	(PI),	Marc	Snir	(Chief	Scien,st),	Pavan	Balaji,	Rinku	Gupta,	Kamil	Iskra,		
	Franck	Cappello,	Rajeev	Thakur,	Kazutomo	Yoshii		

LLNL:	Maya	Gokhale,	Edgar	Leon,	Barry	Rountree,	Mar6n	Schulz,	Brian	Van	Essen	
PNNL:	Sriram	Krishnamoorthy,	Roberto	Gioiosa	
UC:	Henry	Hoffmann	
UIUC:	Laxmikant	Kale,	Eric	Bohm,	Ramprasad	Venkataraman	
UO:	Allen	Malony,	Sameer	Shende,	Kevin	Huck	
UTK:	Jack	Dongarra,	George	Bosilca,	Thomas	Herault	

See http://www.argo-osr.org/ for more information 

An	Exascale	Opera0ng	
System	and	Run0me	
SoJware	Research	&	
Development	Project	

Developing	vendor	neutral,	open-source	OS/R	so]ware		
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What	OS/R	Gaps	Must	We	Address?		
•  Extreme	in-node	parallelism	

–  Poor	mechanisms	for	precise	resource	management	(cores,	power,	memory,	network)	
–  Legacy	threads/tasks	implementa6ons	perform	poorly	at	scale	

•  Dynamic	variability	of	plaPorm;	Power	is	constrained	
–  Poor	run6me	mechanisms	for	managing	dynamic	overclocking,	provisioning	power,	

adjus6ng	workloads	
–  No	mechanisms	for	managing	power	dynamically,	globally,	and	in	coopera6on	with	

user-level	run6me	layers	

•  Hierarchical	memory	
–  Poor	interfaces	/	strategies	for	managing	deepening	memory	

•  New	modes	for	HPC	
–  No	portable	interfaces	for	easily	building	workflows,	in-situ	analysis,	coupled	physics,	

advanced	I/O,	applica6on	resilience	

10/28/16	 Argo	OSR						Pete	Beckman	 15	
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Hierarchy	of	Enclaves	

connected	via	a	Backplane	

Elas6c	intranode	containers	
with	resource	knobs	

.

.

. Lightweight	thread/tasks	designed	for	
containers,	messaging,	and	memory	hierarchy	

Adap6ve,	learning,	integrated	control	system	

Argo	Explora6ons	to	Address	Exascale	Gaps	



17	
Hardware	&	OS	

Applica0ons	

Shared	
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Understanding Cities 

80% 
GDP 

70% 
Energy 

70% 
GHG 
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Why	
measure	
ci6es?	
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PM 2.5, 10, 100 

A	collabora6ve	project:	
Argonne	Na6onal	Laboratory,		the	University	of	Chicago,	and		the	City	of	Chicago	

	
Supported	by	collabora6ng	ins6tu6ons	and	the	U.S.	Na6onal	Science	Founda6on.	
Industry	In-Kind	partners:	AT&T,	Cisco,	Intel,	Microso],	Motorola	Solu6ons,	Schneider	Electric,	Zebra	
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Waggle:	An	Open	Plamorm	for	Intelligent	Sensors	
Exploi6ng	Disrup6ve	Technology,	Edge	Compu,ng,	Resilient	Design	

Machine	Learning	
Computer	Vision	

Novel	Sensors	
Nano	/	MEMS	

Low	Power	CPUs	
GPU	/	Smartphones		
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Relays	
Current	Sensors	
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Real	6me	clock	&	Internal	sensors	

Mul6ple	boot	media	(μSD	/	eMMC)	

4-core	ARM	

Node	Control	&	
Communica6ons	

4	+	4-core	ARM	
8-core	GPU	

In-Situ	/	Edge	
Processing	

Powerful,	Resilient	&	Hackable	
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“Deep	Space	Probe”	Design	Linux	Development	Environment	
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Waggle	/	AoT	
Robust	Tes0ng	
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Edge	Compu0ng:	
Analysis	and	Feature	
Recogni0on	
	
Preserving	Privacy……	

•  Parallel	Compu6ng	
•  Open	Plamorm	
•  Deep	Learning		
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Waggle	Machine	Learning	&	Edge	Compu6ng	
•  We	are	exploring	Caffe	&	OpenCV	

–  Convolu6onal	Neural	Networks	

•  Training	will	be	done	on	systems	at	
Argonne	

•  Classifica6on	on	Waggle	
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The	Data	



33	

PM	2.5	Alert	

Power	Outage	

Damen	&	Ashland	



34	Pete Beckman, Charlie Catlett, 
Rajesh Sankaran (ANL) 
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Waggle:		A	PlaPorm	for	Research	

•  Open	Source	/	Open	PlaPorm	
–  Reusable,	extensible	so]ware	communi6es	

•  Machine	Learning:	Computer	Vision	
–  Data	must	be	reduced	in-situ	

•  Novel	Sensors:	Nano	/	MEMS	/	μfluidics	
–  Explosion	of	nano/MEMS	&	imaging	tech	

•  Low-Power	CPUs:	GPU	/	Smartphones	
–  Powerful,	low-power,	smartphone	CPUs	

Opportunity:		Big	Data	+	Predic6ve	Models	
			Smart	Sensors	+	Supercomputers/Cloud	Compu6ng	=	predic6ons	and	analysis	
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Why	HPC	Geeks	Should	Care	
•  New	sensors	are	programmable	parallel	computers	

–  Mul6core	+	GPUs	&	OpenCL	or	OpenMP	
–  New	algorithms	for	in-situ	data	analysis,	feature	detec6on,	compression,	deep	learning	
–  Need	new	progmod	for	“stackable”	in-situ	analysis	(for	sensors	and	HPC)	
–  Need	advanced	OS/R	resilience,	cybersecurity,	networking,	over-the-air	programming	

•  1000s	of	nodes	make	a	distributed	compu0ng	“instrument”	
–  New	streaming	programming	model	needed	
–  New	techniques	for	machine	learning	for	scien6fic	data	required	

•  Both	for	within	a	“node”	and	collec6vely	across	6me	series	

•  How	will	HPC	streaming	analy0cs	and	simula0on	be	connected	to	live	data?	
–  Can	we	trigger	HPC	simula6ons	a]er	first	approxima6ons?		(weather,	energy,	transporta6on)	
–  Unstructured	database	with	provenance	and	metadata	for	QA/collabora6on	

•  Use	novel	HPC	hardware	to	solve	power	issue?	
–  Can	we	use	neuromorphic	or	FPGAs	to	reduce	power	for	in-situ	analysis	&	compression?	

•  We	are	trading	precision	&	cost	for	greater	spa6al	resolu6on:	What	is	possible?	
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Cloud	
Database	

Near	
Real	Time	
HPC	Simula0ons	

Data	Aggrega0on	
Mul0ple	Sources	

Data	Analysis	
and	HPC	simula0ons	

Parallel	Computa0on	
at	the	Edge	

New	Edge	
Algorithms	
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RISC	version	of	Convergence	Story:	
Start	by	enabling…		remove	roadblocks	
(then	everyone’s	wish	list	follows)	

•  Applica6ons	(Science	Drivers):	So]ware	needs	&	workflow	pauerns	
•  Opera0ons	

–  Support	real-6me	and	streaming	from	fast	networks	
–  Support	node	sharing,	long-lived	services,	storage	requests	for	years…	

•  Architecture	
–  Mothball	current	parallel	file	systems,	replace	with	persistent	storage	services	

(databases,	KV,	etc.)	
–  Accelerate	move	of	storage	into	compute	infrastructure	

•  SoJware	
–  Linux	so]ware	development	environment.	
–  Na6ve	support	for	low-level	infrastructure:	Docker,	VMs,	Mesos,	etc.	
–  New	focus	on	QoS;	So]ware	Defined	Storage,	on-demand	services,	etc.	
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Courtesy:	Mark	Asch	

BOF	SC2016	
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Chicago	
Pittsburgh 

New York Portland 

Atlanta 

Boston 

Delhi 
Chattanooga 

2016-17	Phase	2	Pilots	

Developing	a	pilot	project	strategy	aimed	at	empowering	
partner	universi,es	and	na,onal	laboratories	to	work	with	

their	local	ci,es.	

Chicago	

2016	Phase	1	Pilots	

Seattle 
Bristol 

Newcastle 

Developing	a	pilot	project	strategy	aimed	at	empowering	
partner	universi,es	and	na,onal	laboratories	to	work	with	

their	local	ci,es.	

Denver 

 

Ini6al	discussions	  
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Ques6ons?	


